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Statistical analysis of stochastic resonance in a simple setting
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A subthreshold signal may be detected if noise is added to the data. We study a simple model, consisting of
a constant signal to which at uniformly spaced times independent and identically distributed noise variables
with known distribution are added. A detector records the times at which the noisy signal exceeds a threshold.
There is an optimal noise level, called stochastic resonance. We explore the detectability of the signal in a
system with one or more detectors, with different thresholds. We use a statistical detectability measure, the
asymptotic variance of the best estimator of the signal from the thresholded data, or equivalently, the Fisher
information in the data. In particular, we determine optimal configurations of detectors, varying the distances
between the thresholds and the signal, as well as the noise level. The approach generalizes to nonconstant
signals.[S1063-651X99)17110-1

PACS numbg(s): 87.10+e, 02.50.Ph, 05.40.Ca, 07.05.Mh

[. INTRODUCTION asymptotic variance of estimators. Here we show how, in
simple specific settings, optimal estimators of a constant sig-
A detector with a threshold cannot detect a subthresholdal can be constructed. We explore the detectability of the
signal. If noise is added to the signal, then information abousignal in a system with one or more detectors. In the case of
the signal can be obtained from output of the detector. Therseveral detectors, we assume that the same noise is fed into
is an optimal noise level, beyond which information abouteach detector. This is always true for external noise but may
the signal deteriorates again. This phenomenon is known adso happen if the noise is internal, e.g., when neurons re-
stochastic resonance. For a recent review,[ $¢e ceive background noise from other neurons. Different detec-
If the signal isperiodic and observed over a relatively tors may well have different thresholds, or a detector may
long time interval, then a common measure of detectabilitthave more than one threshold; 984 —23. We determine
of the signal is the signal-to-noise ratio; §@e-5]. Instead of  optimal configurations of detectors, varying the distances be-
looking at the power spectrum, one may also look at th@ween the thresholds and the signal, as well as the noise
(empirjcab residence—time probability distribution, or inter- |ayel. We study the simplest possible model of signal plus
spike interval histogram; s¢€—8|. noise. The signas is constant over some time interval, say

If an aperiodic signal is observed over a relatively long 0,1]. At uniformly spaced times;=i/n, independent and
time interval, then detectability has been measured by a co{-

relation measure; s¢®—13]. The last reference also uses the
interspike interval histogram.
If a signal is to be reconstructed without much delay, the

identification must be based on observations over a relativel .
short time interval, in which the signal may be nearly con-! are more densely spaced, or if there are several detectors

stant. Then the signal-to-noise ratio and correlation measur ch of which receives internal noise mt;lependently of the
break down. The model reduces to a parametric one, an thers,_then the numbg?rof observauo.ns IS .|ncreased, and
information measures such as Fisher information can still b&'€ variance of the estimator for the signal IS reduced corre-
used; seé14—1§, and in particulaf19,20. spondingly. For large, the signal can be estimated well for

The inverse of the Fisher information is the minimal & large range of no_ise variances. This_ effe(_:t of the 'aW O.f
large numbers had first been observed in a different setting in

[10] as stochastic resonance without tuningee also
: 12,13,24,2%
*Electronic address: pgreenw@math.ubc.ca [12,13,24, . . .
TURL: Pg @ Our approach differs from the literature on stochastic
' resonance in that we study detectability of the signal from a
*Electronic address: lward@cortex.psych.ubc.ca fr:atls_tlcallr;0|nt ?r:c V|dev¥: yvetstudy (;p;tr:mal r_econs;;mt:og of
SURL: http://www.psych.ubc.calvard/personnel/ward/ € signal from the data in terms of the varianceexcale

, ) . 120 N
|Electronic address: wefelmeyer@mathematik.uni-siegen.de  estimators for the signal, i.e., ofA(s—s) rather tban of.
TURL: http://www.math.uni-siegen.de/statistik/wefelmeyer.html By the central limit theorem, the variance pf%(s—s) is

dentically distributeds; are introduced. The noisy signal is
steg;,i=1,...n.

If the signal is observed over a longer time interval, or if
e noise has “higher frequency” in the sense that the times
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about the same for alsufficiently large n, whereas the vari-  not assumes to be unbiased or asymptotically normal. The
ance ofs tends to zero as i/ This is why we see stochastic convolution theorem now says that=M +1~ 2N, with N a
resonance for arbitrarily large, whereas the effect dimin- standard normal random variable, didndependent oN. If
ishes with increasing in the previous treatments. Stochastic the rescaled estimatar’4(s—s) is asymptotically normal

resonance without tuning is an aspect of the diminishing efy, ...\ ~riance| 1 thens is efficient i.e., asymptotically

fect. . . s
. . maximally concentrated in symmetric intervals,
We compare four different types of observation of the y y
noisy signal: P(—c<I| Y’N=<c)=P(—c<L=<c) forall ¢>0.

(i) The noisy signak;=s+ ¢; is fully observed. We need
the information in the noisy signal to measure how much_ - o o
information is lost when the noisy signal is not completely Equivalently,s has minimum asymptotic risk for all sym-
observed. metric and bowl-shaped loss functiobs
(i) Those timeg; are recorded at which the noisy signal 1
s+ ¢g; exceeds a single thresholi> 0. The observations are Eb(I™""N)<Eb(L).
then the indicatorX?=1(s+&;>a). This scheme was pro-
posed in[26] as a model of a neuron. In particular, the inverseé ! of the Fisher information is the
(iii) It is recorded when and which of a finite number of Minimal asymptotic variance among regular estimators. Fi-
thresholds @Ga,<---<a, are exceeded. LetA  nally, if
={ay, ...,a,} denote the set of thresholds. The observa-

tions can then be written as - .
' wr n35-5)=n"Y23 /(XN +o,(1), (1D
i=1

O, S+8i$al,

A={j, aj<s+eg=a; for j=1,...r—1, - . . .
Xi ] J fi=dit1 ] thens is regular and efficient. In the following sections, we
r, stei>a. will construct estimators which have such a stochastic ap-
) i ) . ) proximation.
Such observations arise with detectors with different The paper is organized as follows. In Sec. Il we consider
thresholds, and common background or internal noise. 4 single threshold. We assume that the noise distribution is
(iv) Whenever the single thresholal is exceeded, the nown. If we observe indicator¥?, ... X2, an efficient
noisy signal itself is observed. Then the observations are qiimator for the signal is obtained as a function of the em-
X72= (s+&)1(s+e >a). pirical estimator for the probgpility thqt the nqisy signal ex-
' (ste)l(stei>a) ceeds the threshold. The efficient estimator is exactly equal
Case(iv) is approximated by cas@i ) for a large number 0 the maximum likelihood estimator based X, ... X§.
of closely spaced thresholds aboae Its asymptotic variance equals the inverse of the Fisher in-

Let us now explain in which sense the inverse of theformation. . . _ . _
Fisher information is the minimal asymptotic variance of es- We calculate the Fisher information for arbitrafyosi-
timators. We refer t428], Sections 2.1 to 2.3, for the fol- tive) noise distribution. As a function of the noise variance,
lowing results. We note first that in our setting, exactly un-the information has, in general, several local maxima, i.e., it
biased estimators fos will not exist, and the concept of exhibits stochastic multiresonanc&Vith normal noise, the
uniformly minimum variance unbiased estimators is not apfunction is unimodal with a very pronounced resonance
plicable. Instead, we use asymptoticoptimality concept. ~ POINt. . . . _ .

For the four types of observation described above, we have We determine the proportion of information retained by

local asymptotic normalityin the following sense. LeP,  thresholding, i.e., the ratio of the information X, ... Xg
denote the distribution oK;, and letP? denote the joint a@nd inX,, ... X,. For normal noise, the proportion of in-
distribution of the observation¥,, ... X,. Then the log- formation is a unimodal and symmetric function of the dis-
likelihood ratio admits the stochastic expansion tance between signal and threshold. Hence the proportion of

information retained by thresholding is maximal if the signal

dP2+n_1/2t n 1 is at the threshold. The maximal value is 0.636 620, i.e.,
lo —=n"YAY /(X)) - 51+ 0p(1). equal to the relative efficiency of the sample median in the
s =1 normal location model.

In Sec. Ill we consider several thresholds. We assume

Here //s=di—odPs./dPs is the score function and | ggain that the noise distribution is known. If we observe
=Ey/5 is the Fisher information Both /s and I will be A~ xA 4y efficient estimator for the signal is, again,

calculated in the following sections. Call an estimatdor s the maximum likelihood estimator. However, when there is

regular with limit L if more than one threshold, the maximum likelihood estimator
- Y N cannot be represented as a function of the empirical estima-
n*fs—(s+n""1)]=L under P, 15 forall t. tors for the probability that the noisy signal exceeds one of

the thresholds.
Here convergence is meant in distribution. Regularity means \we calculate the Fisher information for two thresholds
that the distribution oh4(s—s) convergescontinuouslyin ~ and arbitrary noise distribution. The information gain by a
s, in a rather weak sense, to some limit distribution. We dathresholdb>a for a constant signa<a is small.
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When more and more thresholds are introduced above a A. Efficient recovery of the signal
fix>ead thresggld a, the informatipn increases to .that qf We can write the signal as a function pf,
X7, ... X%, The information in these observations still
exhibits stochastic resonance. s=a—F '(1-py).
We determine the proportion of information retained by ) . o .
X723, ... X ?relative toX,, . .. X,. For normal noise and The usual estimator fops is the empirical estimator
signal equal to threshold, the proportion of information re- 10 A
tained is 0.818 310. p== > Xd=—, (2.2
If the noise distribution is known only up to a scale pa- ni=1 n

rameter, the signal cannot be identified from the times at R

which asinglethreshold is exceeded, i.e., frodf, ... X2.  with n=#{i:X?=1}. The estimatop is unbiased and con-
We show that withtwo thresholdsA={a,b}, both the signal sistent forps. The standardized erra’3(p— ps) is asymp-

and the scale parameter of the noise distribution are estiotically normal with variances(1—ps). We obtain an es-

mated consistently fror2°, . . . ,X‘ﬁ,‘b by the maximum like-  timator for the signal as a function of the empirical estimator,
lihood estimator. . L .
We do not treat the case of several detectors with a dif- s=a—-F *(1-p). 2.3

ferent source of(interna) noise for each of them. If the R

sources generate noise independently of each other, the joifite estimator is not unbiased. Singés a continuous func-
information is simply the sum of the informations in the tion of p, the estimators is consistent fors. Sinces is a
separate detectors. The joint information is then CO”Siderabl¥ontinuously differentiable function op, it follows that
larger than with a single source of noise. An additional ad- ;- . . . )
vantage of such a setting is that the noise variance may b (s—s) is also asymptotically normal, with variance

different for different detectors. _ _ _ _
Suppose that the signal is not constant and changes no- v = Ps(1~Ps) 5= Fla-s)l Fia S)], (2.9
ticeably in the time interval in which the observations are fIF~(1-ps)] f(a—s)

made(which we have taken to be the unit interalhen the R

noisy signalX;=s; +e; follows a nonparametric regression It is well known and easy to check that is regular and
model, with known error distribution, and the signal can beefficient for ps. Since continuously differentiable functions
estimated, e.g., by a kernel estimator. Reconstruction of thef regular and efficient estimators are again regular and effi-
signal from the corresponding thresholded dXfa= 1(s;, cient, the estimatos is regular and efficient for the signal,
+¢;>a) is studied in[27]. The mean squared error shows 2NdVs is the minimal asymptotic variance of regular estima-
stochastic resonance. The bias term of the kernel estimat&?'s ofs

affects the optimal noise variance and leads to results that are

quantitatively, but not qualitatively, different from the results B. Variance bound and Fisher information

for constantsignal obtained here. We will assume that the ag pointed out in the Introduction, the minimal

rggularity conditions needed for our calculations are Satisasymptotic variance, can be calculated as the inverse of the
fied. Fisher information fors, the variance of the score function
for s. The score function is the logarithmic derivative, with

Il. ONE THRESHOLD respect tcs, of the probabilities,
FW=2 0=

Let a be a threshold and a constant signal. We think of _ )
1-ps’
S S

s as being non-negative and below the threshold, but the
calculations will not depend on this assumption. Let
€1, ...,&, be independent with distribution functioF. here and in the following, the dot denotes the derivative with
Write P4 for the distribution ofX;=s+¢;, andEg for ex-  respect to the parametsr The Fisher information is there-
pectations under this distribution. We assume that the onlyore
information we have about the signal is whether it exceeds
the thresholda. Equivalently, we observe

ps  Ps p:

s Ps 1_ps:ps(1_ps).

(2.5
X?=1(s+eg>a), i=1,...n. _
Sinceps=—f(a—s), the Fisher informatiori2.5) is indeed

. 71 . . . .
The observations are independent Bernoulli random vari€gual to the inverseg  of the minimal asymptotic variance
ables with probabilities 2.4),

. " f(a—s)? -
Ps=P(X2=1)=P(a,®)=1-F(a-s). (2.1 = Fa s Fa g~ (2.6

In this section, we consider a single threshaland suppress This Fisher information is also given {19], relation(5.1).
a in the notation. Indeed, by choosing an appropriate scaléfThe Fisher information has been used as a measure of the
we may takea equal to 1. transmitted information in other models; sg#9,30,19. It
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FIG. 1. Fisher information
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will be useful to rewritelZ as follows. Using integration by This is a unimodal function ot~ with a very pronounced
parts, or taking the derivative @f,= [ f(x—s)dx under the resonance point. The function is symmetricain s. Hence a

integral, we obtain superthreshold signal produces the same stochastic reso-
) nance property as a subthreshold signal. Figure 1 sfhbcyvs
o= — fﬁf’(x—s)dx:E 130y 2.7 as a function ofs and o. The optimalo decreases with the
S S=(a,» S* .
a

distance from the signal to the threshold; at the same time the
maximal information goes to infinity. For example,af 1

Since Emg=0, and the signal is lows=0, then the optimab is 0.635 00,
and the maximal value df;,, is 0.608 42.
o (Blagm)®  [cow(lex,ms)l” '
S Pya,»)[1-Pga,»)] varl , . .
. : : ] @) (2.9 D. The estimator s equals the maximum likelihood estimator
The maximum likelihood estimator based o is the
C. Stochastic resonance solution ins of
Suppose that the errors; have distribution function n
F,(X)=F(x/o) with scale parametes, whereF is stan- 0=E /(X3 = n——(n n) 1
dardized to variance 1. Given a threshaldnd a signak, =1 pS
which error variance maximizes the information in the indi- .
catorsX?=1(s+¢&;>a)? The information(2.8) becomes (1p7p)[n(1 ps)—(N—n)ps], (2.9

o 2
(f m(x)f(x)dx)
a (a—s)lo

lS
{od —s
ZF( ) 1
g

The informationl 2 typically tends to zero forr tending to E. Loss of information through thresholding

zero or to |nf|n|ty In general, there will not be a unique

maximum. In particular, if the noise distribution has several How much information is lost by observing the indicators
modes, so willl2 as a function of the noise varianee ~ X?=1(s+&;>a) only, rather than the noisy signah-¢;?
Several local maxima arise also in other threshold systemd,he density o6+ ¢; is f(x—s). Hence the score function for
and with other measures of signal detectability[3d] this  the noisy signal is

property is calledstochastic multiresonanc&ee alsd?23].

e., the solution ins of ps=n/n or, equivalently, +F(a

—s)=p. The estimatos was determined as solution of the
last equation.

a—s

g

If F is the standard normal distribution functioh, we mg(X) = — f(xi—s):m(x_s), (2.10
have f(x—s)
a—s\? L . . o
@ with m=f'/f, and the Fisher information is
g
a
lso= ,. [a—s a-s
7P| —||1- 0| — IzEsmgzvarSmszj- m(x)2f(x)dx. (2.1
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The informationl in the fully observed noisy signa{; can
be compared with the informatidd for X2 in the form(2.8).
We havel2<I by the Schwarz inequality. The proportion of
information retained is

12 5

|—=[corrs(1(a'w) ,mg)]°. :
We note that the information retained increases with the cor 5
relation between the indicator function,l., and the score § o <
functionmg. This tells us for which noise densitiéshresh- | &
olding does not lose much information. 5 ] i

The proportionl &/1 is a function of the distanca—s of &

the signal from the threshold, re 5 A

Sornas e Q.

tion
05

04

proportion of informa
02

Ia
T =R(@-s),

FIG. 2. Proportion of informationl,} /1, retained byX:.

with
t Remark For certain noise distributions, thresholding may

o 2 not only reduce the information but even thae at which

Ju m(x)f(x)dx the signal can be estimated. An example is a one-sided noise
R(u)= ) distribution like the exponential distribution. The corre-
F(u)[1— F(u)]f m(x)2f(x)dx sponding location family consists of distributions that are not
absolutely continuous with respect to each other. On the ba-

i , ) sis of the noisy signad+ ¢;, the signalk can be estimated at
_ For what error variance doe)ga r'etal'n the most informa- arate flog n)l/z_ See Chapter VI ifi32]. On the other hand,
tion? Suppose thak; has distribution functionF,(X) a5 |ong as the signal is below the threshaid,a, the distri-
=F(x/o). Then the score function fpr the' noisy s_ignal IS hutions of the noisy signal above the thresholsh €)1 (s
m§(,=m((aa—_s)/zr)/cr, and the proportion of information re- | . ~ 4 "are mutually absolutely continuous for differesnt
tained byX;" is In particular, the distributions ok? are always mutually
absolutely continuous for differesf as long as the probabil-
ity of exceeding the threshold remains strictly between 0 and
1. The optimal rate for estimators afon the basis of §
+&;)1(s+e;>a) or X2 is thereforen'’?,

Remark.A widely used measure for the quality of a de-
graded(nonconstantsignal is the signal-to-noise ratio. Un-
like the Fisher information, it has the counterintuitive prop-

large o because thex? are most informative if the noisy erty that degrading the signal may improve the signal-to-
signal is with equal probabilities above and below the threshngjse ratio; se¢33,23.

old. For the same reason, we expect the same behavior for

a—s

If the signal is at the threshold=a, then1Z /1 ,=R(0),
which is independent of the noise varianeelf the signal is
below the thresholds<a, we expectil /I, to be large for

So' " o

s>a.
If Fis the standard normal distribution functiah, we Ill. SEVERAL THRESHOLDS
havem(x)=x and integration by parts gives Consider thresholds, &<a;<- - -<a,, a constant signal
) s, and a noisy signas+e;, with ¢4, ... e, independent
J' xo(x)dx=—[o(b)— o(a)]. (2.12 with distribution functionF and densityf. We observe which
a thresholds are exceeded by the noisy signal. Equivalently,
we observe
Therefore,
) 0, stej=ay,
(f Xgo(x)dx) ) xiA= I, aj<stegj=aj;, for j=1,...r-1,
R(u): . QD(U) r, S+8i>ar.

O(U[1-0(W)]  d(WL-d(u)]’

Here A stands for the set of thresholds,, ... ,a;}. The

The functionR is unimodal and symmetric around 0. We observation&?, . . . ,Xﬁ are independent, with probabilities

haveR(0)=0.636 620. This happens to be the relative effi-

ciency of the sample mean in the normal location model. Pso=P(XA=0)=F(a;—s),
HenceX? retains about two thirds of the information if the
signal is at the threshold, and considerably less if it is above Psj= p(xiA:j): F(aj11—S)—F(aj—s)

or below ando is small. Figure 2 showsl /I, =R[(1
—9)/o] as a function ok ando. for j=1,...r—1,
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Per=P(XP=r)=1-F(a,~s).

The observations follow a distribution d®, . .. r}, with a
one-dimensional parameterForr =1, the family of distri-
butions consists ddll distributions on{0,1}, and an efficient

GREENWOOD, WARD, AND WEFELMEYER
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Of course,12” reduces td 2 for b=a.

Assume, for S|mpI|C|ty, that the distribution ef is sym-
metric around 0. Suppose theinda are given. By a sym-
metry argument, the optimal choice of threshblds sym-
metrically oppositea with respect tos, namelyb=2s—a.

estimator fors is obtained as a function of the empirical For s>a we haveb=2s—a>a and

estimator forps=P¢(a;,»); see Sec. Il. For>1, we do not

get such a simple efficient estimator, but the maximum like-

lihood estimator is, of course, still efficient.

A. The maximum likelihood estimator based onX%, ... X4

The score function oK is
r p .
/0=2 Sx=]).
j=0 ij

Hence the maximum likelihood estimat®is the solution in
s of

p
0= 2 /(X = Z nj—> (3.0
j=0 pSJ
with njz#{i:XiA=j}. The Fisher information is
r bz'
18=E/2=2 = (3.2
j=0 Ps;j
Here A stands for the set of thresholda,, ...,a,}. The

— o0

(a=s)lo 2
(ZJ m(x)f(x)dx)

|a,25—a:

a—s

o

o’F

We see that®®~2>12 . The information is nearly doubled
by the second threshold iF((a—s)/o) is considerably
smaller than3. The information gain is small ifF[(a
—s)/o] is close to3.

In the applications we have in mind, we will not be able
to choose any of the thresholds dependent on the signal.
Moreover, there will be a limit to the sensitivity of the de-
tectors. Suppose the minimal thresholdhjsso that the sec-
ond threshold must be chosen abavé&uppose also that the
signal is below the thresholds<<a. Then the information
gain through the second threshold, or even through further
thresholds above, is small regardless of the configuration
of signal, thresholds and noise variance. The reason is the
following. For b close toa, the noisy signalX;=s+eg; is
most of the time either below both thresholds or above both
thresholds, and the indicatot*® does not say much more

estimators is not unbiased. A Taylor expansion of the equa-about the location of the signal than with a single threshold.

tion around the true parametsshows that
n
nYAs—s)=n"123 /(XM/15+0,(1).
=1

Hences is regular and efficient by the characterizatidn).

On the other hand, fdp far abovea, the noisy signal rarely
exceedsh, and we rarely learn more abostthan with the
single thresholda.

If Fis the standard normal distribution functiekh, we
havem(x)=x, and by Eq.(2.12,

a—s\? ( (b—s) a-s )2
P\ P\ |~ —
B. Optimal choice of a second threshold |ab:i gL T T
2 - — —
Suppose that the errors; have distribution function o\ a-s (b_s) —d ars
F,(X)=F(x/o) with scale parametes, whereF is stan- o o o
dardized to variance 1. Choose two thresholgsa@<b and b—s\?2
a signals. The Fisher information in observing which of the (p(—)
two thresholds is exceeded by the noisy signal is obtained + g
from (3.2) as b-s
i

(a—s)lo 2
1 ( f_ m(x)f(x)dx)

0

I ab:

o2 a-s

o

(b—s)/o 2
( f( m(x)f(x)dx)

a-s)lo
=
Fl—|—F
(o
0 2
(J m(x)f(x)dx)
(b=s)/a

=

F

a—s

o

(3.3

Suppose in particular that=1. We have seen in Sec. Il that
X! retains the most information, as a functionspfat s=1:
we havel} /I ,.=R(0)=0.636 620. The value does not de-
pend on the noise variane, and we may take=1. Now
we add a second threshold>1. The information retained
by X! is

©(0)?
®(0)

@(b—1)?

[e(b—1)— 0)]2+ _
1-®(b—1)"

d(b—1)—d(0)

see Fig. 3. The maximum is 0.759 57, which is attained for
b=1.98.

For thresholds in symmetric positions around the signal
we obtain
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(Esl(aj 8 41] mS)z (Esl(aj Ms Esl(c’aHl] ms)z

Ps(aj ,aj+1] B Ps(aj ,C]+ Ps(cuaj+1]

since, in general, by the Schwarz inequality,

? 1/2 @i ’ ai2
> a| =| 2 b E,z gEbiEb—i

if b;=0 for all i.

E. Observing the noisy signal above the threshold

, , , , Consider a single threshold In Sec. Il we have studied

1 2 3 4 5 the situation where one observes whether the noisy signal
second threshold b +¢&; exceeds the threshold. Suppose now that we also ob-

serve thesize of the noisy signal whenever it exceeds the

threshold. The observations are th¥[i®=(s+¢;)1(s+¢;

>a). They contain more information about the signal than

FIG. 3. Proportion of information)1%/1,, retained by two

thresholds, at 1 ant, for noise variance 1.

a—s\2 the indicatorsx?=1(s+&;>a). The distribution of thex;"?
20| — is
Ia,Zsfa: g
so a—s| Py(—,aleg(dx) + f(x—s)1(x>a)dx,
P —
o whereeg is the Dirac measure in 0. Hence, the score func-

tion of X[ % is
C. Loss of information through thresholding )

How much information is lost by observing the indicators mg 3(x) = %1()(: 0)+my(x)1(x>a),
XiA rather than the noisy signX;=s+¢;? We have seen in s
Eqg. (2.1 that the Fisher information foX; is | =varm;.
To compare with the Fisher informatid§ for X?* defined in
Eqg. (3.2, we rewrite the latter like Eq.2.8) in the case of
one threshold. Similarly as in E¢R.7) the derivative ofpg; 0= Ecl(—waMs;
with respect to the parameter is ’

with mg the score function(2.10 of s+g;, and g
=P4(—,a] with derivative

a, compare Egs(2.1) and(2.7). The Fisher information oX; ®
psj:_f P (x— s)dx= Ecl(a, o, 1Ms, is therefore
3
(Es-’]-(—OC,a]ms)2 2
where m, is the score functiorf2.10 for the noisy signal. ?a:—ps(_m,a] T Esl(a)Ms. (3.9
The Fisher informatior{3.2) is then

! (Esl(a- a4 q] ms)2
[ Y i EE Ll

i=o  Ps(3j.aj41]

An efficient estimator fors is the maximum likelihood esti-
(3.4) mator. It is a solution irs of the equation

. :
~ s
_ Sa sy >ay >a _ o\ s
with ap=— anda,, ;= +. By the Schwarz inequality, O_;l mg (X )_X;a:> my(X) +(n ”)qs'
i a
2
IA<i Ps(a),8j+1]Ed(a a1 Me e (3.6)
s . s : ~
=0 Ps(2),8;+1] with n=#{i:X;"®>a} To compard ¢ ® with the Fisher infor-

mation (2.5) of the indicatorX;, we rewrite the latter as
D. The information contained in additional thresholds

ja= (Es]-(a,w)ms)2 n (Esl(—oc,a] ms)z

It is clear that additional thresholds will improve the de- s P(a,) Py(—.a]
S 1 S )

tectability of the signal. To quantify the information gain, we
consider the Fisher informatid in the form(3.4). Suppose and obtainl 2<122 from the Schwarz inequality
that there is an additional threshaldetween the thresholds sos

a; anda; . Thejth term in1% is then replaced by (Esl(amyMs)?<Py(a,%)Esl (g ymi=EmZ=1.
2 2
(Esl(a; cjMs) . (Eslica, 1Ms) The proportionl S #/1 of information retained by is a
P(a;,c] Ps(C,aj11] function ofa—s,
>
This expression is, indeed, larger than ik term in Eq. E=R>(a—s)
| L

(3.4),
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FIG. 4. Proportion of informationl - retained byX;™t.

with

(fuwm(x)f(x)dx)z f

wm(x)zf(x)dx
J’_

F(u)j m(x)2f(x)dx fm(x)zf(x)dx'

R™(u)=

For what error variance doe§ ® retain the most informa-
tion? Suppose thats; has distribution functionF ,(x)
=F(x/a). Then

I >a
So

a—s

g

>

o

If the signal is at the thresholé=a, thenI_?/1 ,=R~(0),
which is independent of the noise varianeelf the signal is
below the thresholds<a, we expect _2/1, to be large for

large o because theX;["® are most informative if the noisy

signal is with high probability above the threshold. For the

same reasori_ /1, is large forsmall o if s>a.
If Fis the standard normal distribution functidn, then

(f_uwxw(x)dx i

d(u)

R”(u)= + | x2(x)dx

~p(u)?
)

+1-d(u)+ue(u).

We haveR~(0)=0.818 310. HenceX; ? retains about four
fifths of the information if the signal is at the threshold,
considerably less if it is below and is small, and most of
the information ifs>a and o is small. Figure 4 shows
121 ,=R7[(1—s)/o] as a function ok ando.

F. The limit of dense thresholds

Suppose we fix a lowest threshoddand add more and
more thresholds abowve such that in the limit they become
dense above. We expect that the information in observing

which thresholds are exceeded by the noisy signal converges

GREENWOOD, WARD, AND WEFELMEYER
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tends to infinity withn. The thresholds partitiona(«) into
n+1 intervalsB4, ... ,B,.1, generating ar-field B, which
tends to the restriction of the Borel field ta,fc). Since the
score functionmg of X;=s+eg; is in the spacel, of

Ps-square-integrable functions, the martingale convergence
theorem gives

Es(l(a’x)ms|8n)4>1(a,m)ms in L2. (37)
We have
n+1
Es( 1(a,°¢)ms| B,)= ;l EslBj Es( ms| Bj ).
The variance of the conditional expectation is
n+1
ES[E.S(1(&,m)ms|8n>]2=;1 P<Bj[Es(my|B))]?
nt1 (Eslg mg)?
_ (3.8

T & P

The Fisher information in observing which of the thresholds

a,as, ...,a, is exceeded is obtained from E@.4) as
+1 2
[An— (Esl(—OO,a]ms)2+r12 (EslBJmS)

S PS(—oc,a] =1 PsBj
HereA, stands for the set of thresholfls,a,, . .. ,a,}. The
martingale convergence theorét7) and relation(3.8) then

imply
"1 (Eslgmy)?

2
pB,  otanMs:

=1

Hencel?n converges to the Fisher informati¢8.5) of X; 2
=(steg)1l(st+egi>a).

G. ldentifying the noise variance

Suppose we have one threshaldnd observe whether the
noisy signal exceeds iX*=1(s+¢;>a). Suppose that the
noise distribution function i$ (x)=F(a—s/o). Then the
observationsXq, ... X, are independent Bernoulli random
variables with

a-s
—

We see that if signas and noise variance? are unknown,
they are not identifiable.

The situation is different, in general, if there is a second
threshold, sayp>a. Then the observations are

Ps,=P(X?=1)=1-F

0, stg=<a
xiab: 1, a<s+egi=<b
2, S+8i>b.

to the information in seeing the noisy signal above the

threshold. To see this, choose threshalgs. . . ,a,>a such

The observationX?2®, .
that the gaps between them tend to zero and their maximurmbilities

. ,Xﬁb are independent, with prob-
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a—s
Pso=P(X}*= O)ZF(T)'

a—s

o

b—s
—

The score function oK with respect tcs is

b-s
psl=P<><?b=1>=F(7)—F

psz=P<X?b=2>=1—F(

2 ps
/:(,<x>=j2 —T1(x=]).

=0 Pso

Similarly, the score function oxiab with respect too is

(o

Pss .
1(x=j).
pS()’ ( J)

2
/50=2
j=0

Here the superscriptsand o denote partial derivatives with
respect tes and o. We obtain

/S _ fff(a_s) A f(,.(b—S)—f{r(a—S)
/50 = Fa(a—S)l(X_O) F,(b—s)—F, (a—s)
f (b—s)
Xl(X:1)+m1(X:2),
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fa'(a_s)
F.(a—s)

(b=s)fs(b—s)—(a—s)f,(a—s)
a F.(b—s)—F (a—s)

f(r(b_s)
Xl(X=1)+(b—S)m

/50=—(a~s) 1(x=0)

1(x=2).

We have

/4(0=(a-9)/5,(0),  /4,(2)=(b=9)/%,(2).

Hence, /3, and /¢ are linearly independent, and
|cor(/3, /%) <1, for a<b. This means that the Fisher
information matrix fors and o is nonsingular, and and o
can be estimated jointly, and efficiently, by the maximum

likelihood estimator.
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